The Ergodic Theory of Orbit Equivalence Classification of Group Actions

Nachi Avraham-Re'em

Einstein Institute of Mathematics, The Hebrew University of Jerusalem

October-November, 2022

Descriptive Dynamics and Combinatorics Seminar, McGill

(日) (四) (코) (코) (코) (코)

Krieger's Classification Theorem $_{\rm OOOO}$

Computing the Ratio Set

Measure preserving actions

- (X, μ) is a standard non-atomic measure space.
- Aut (X, μ) is the group of measure preserving transformations: invertible T : X → X s.t. μ ∘ T⁻¹ = μ.
- A measure preserving action G ∩ (X, μ) is a group-homomorphism G → Aut (X, μ).
- A measure preserving action is ergodic if there are no non-trivial invariant subsets: if g.A ⊂ A for all g then μ(A) = 0 or μ(X\A) = 0.
- G, H ∩ (X, μ) are orbit equivalent (o.e.) if there exists
 T ∈ Aut (X, μ) s.t. T (G.x) = H.T (x) for almost every x.
- In other words, the orbit equivalence relations of G and H are isomorphic in a measure preserving way.

イロト イヨト イヨト イヨ

Krieger's Classification Theorem

Computing the Ratio Set

Orbit classification of measure preserving actions

Theorem (Dye)

All ergodic prob. preserving actions of $\mathbb Z$ are o.e.

Theorem (Ornstein & Weiss; Connes, Feldman & Weiss)

All ergodic prob. preserving actions of amenable groups are o.e.

Theorem (Connes & Weiss; Hjorth)

The above theorem is false for all non-amenable groups.

- Connes & Weiss for non-Kazhdan's property.
- Hjorth for Kazhdan's property.
- Each non-amenable group has uncountably many non o.e. prob. preserving actions (Ioana, Epstein).

Krieger's Classification Theorem $_{\rm OOOO}$

Computing the Ratio Set

On the proof of Dye's Theorem

• Key ideas behind Dye's theorem. For ergodic $T \in Aut(X, \mu)$:

Fact If $\mu(A) = \mu(B)$, A can be mapped onto B with iterations of T.

Lemma (The Rohlin's Lemma)

For every $N \in \mathbb{N}$ and $\epsilon > 0$, there is $A \subset X$ such that A, TA, \dots, T^NA are disjoint and together cover X up to ϵ .

- "Proof" of Dye's theorem: if T ∈ Aut (X, μ) and T' ∈ Aut (X, μ') are ergodic, construct a sequence of Rohlin Towers for T and T', refining each other on each level. The corresponding Boolean-mapping gives rise to a point-mapping.
- Ornstein & Weiss generalized Rohlin's Lemma to amenable groups using *tiling*.

Measure Preserving Actions	Non-Singular Actions	Krieger's Classification Theorem	Computing the Ratio Set

Non-singular actions I

- (X, μ) is a standard non-atomic measure space.
- Aut $(X, [\mu])$ is the group of **non-singular transformations**: invertible $T : X \to X$ s.t. $\mu \circ T^{-1}$ and μ are mutually absolutely continuous.
- A non-singular action $G \curvearrowright (X, \mu)$ is a group-homomorphism $G \rightarrow \operatorname{Aut} (X, [\mu]).$
- The notion of **ergodicity** is defined verbatim.
- G, H ∩ (X, μ) are orbit equivalent (o.e.) if there exists
 T ∈ Aut (X, [μ]) s.t. T (G.x) = H.T (x) for almost every x.

Observation

Orbit equivalence and ergodicity depend only on the measure class.

イロト イロト イヨト イヨト

Krieger's Classification Theorem

Computing the Ratio Set

Non-singular actions II

Theorem (Ornstein & Weiss; Connes, Feldman & Weiss)

Every ergodic non-singular action of a countable amenable group is o.e. to a non-singular action of \mathbb{Z} .

- For free actions the proof uses Ornstein & Weiss's generalization of Rohlin's Lemma to non-singular actions.
- The non-free case is due to Connes, Feldman & Weiss and is more involved.
- There is a new proof by Andrew Marks that should be interesting to study.

A (1) > A (2) > A

Computing the Ratio Set

Non-singular actions III (examples)

- Let $X = 2^{\omega}$ with a probability product measure $\rho = \bigotimes_{n < \omega} \rho_n$ with $\rho_n(0) \in (0, 1)$.
- The equivalence relation E_0 on 2^{ω} is defined by xE_0y if and only if $\# \{n : x(n) \neq y(n)\} < \infty$.
- An action G → 2^ω is said to be homoclinic if its orbit equivalence relation is a sub-relation of E₀.

Example (finite permutations)

Let Π be the group of permutations of ω that change finitely many elements. It has an obvious Følner sequence so it is amenable. The natural action $\Pi \curvearrowright (2^{\omega}, \rho)$ is non-singular and in many cases it is ergodic (Hewitt-Savage 0-1 law, Aldous-Pitman 0-1 law).

イロト イボト イヨト イヨト

Krieger's Classification Theorem $_{\rm OOOO}$

Computing the Ratio Set

Non-singular actions IV (examples)

Example

 $G = \bigoplus_{n < \omega} \mathbb{Z}/2\mathbb{Z}$ with "coordinate-wise addition" acts naturally $G \curvearrowright 2^{\omega}$ by "flipping" each coordinate.

- Let $\rho = \bigotimes_{n < \omega} (p, 1 p)$. If p = 1/2 it is measure preserving, and if $p \neq 1/2$ it is merely non-singular.
- By the Kolmogorov's 0-1 law this action is ergodic w.r.t. ρ .
- Clearly, the orbit equivalence relation of $\bigoplus_{n < \omega} \mathbb{Z}/2\mathbb{Z}$ is E_0 .
- ⊕_{n<ω} ℤ/2ℤ is amenable (either because it is Abelian, or using the obvious Følner sequence), so from the Connes-Feldman-Weiss Theorem it is orbit equivalent to a non-singular action of ℤ.

イロト イポト イヨト イヨ

Krieger's Classification Theorem $_{\rm OOOO}$

Computing the Ratio Set

Non-singular actions V (examples)

Example (dyadic odometer)

 2^{ω} has a structure of an Abelian group:

- Identify x=(x(1),...,x(n),0,0,...) with the integer $N(x)=\sum_k x(k)2^k$. If $x, y \in 2^{\omega}$ are two such elements, $x \oplus y$ is the unique element $z \in 2^{\omega}$ with N(x)+N(y)=N(z).
- $(1,1,0,0,\dots) \oplus (1,1,1,0,0,\dots) = (0,1,0,1,0,0,\dots)$.
- This rule extends to all of 2^{ω} and there are inverses.
- For 1=(1,0,0,...) we have $\ominus 1=(1,1,1,...)$.
- Let $\mathcal{O}: 2^{\omega} \to 2^{\omega}$, $\mathcal{O}x = (1, 0, 0, ...) \oplus x$. It can be shown that its orbit equivalence relation is E_0 .
- Thus, \mathcal{O} and $\bigoplus_{n < \omega} \mathbb{Z}/2\mathbb{Z}$ are o.e. as non-singular actions.

(日) (四) (三) (三)

Krieger's Classification Theorem $_{\rm OOOO}$

Computing the Ratio Set 000

Non-singular actions VI (examples)

Example (shift)

Let G be a countable group and $X = 2^G$. The *shift* $G \curvearrowright 2^G$ is

 $g: x(h) \mapsto x(gh).$

- The orbit equivalence relation of the shift, denoted by E(G, 2), is far from being homoclinic.
- In the next week talk I will discuss the very interesting relations between the shift and the homoclinic actions.

< □ > < 同 > < 回 > < Ξ > < Ξ

Krieger's classification I

- Two cases for a non-singular ergodic action $G \curvearrowright (X, \mu)$:
 - The action is *essentially* measure preserving: there is a measure ν on X s.t. (i) ν is equivalent to μ (ii) ν is G-invariant.
 - Thus, $G \curvearrowright (X, \mu)$ is isomorphic, in the non-singular category, to the measure preserving action $G \curvearrowright (X, \nu)$.
 - **2** The action is *genuinely* non-singular: there is no ν as before.
- The first case corresponds to the classical theory of measure preserving actions and Dye's theorem provides a full answer (caution: depending on whether ν is finite or infinite)
- The second case is different and requires new ideas.

イロト イポト イヨト イヨ

Computing the Ratio Set

Krieger's classification II

- An ergodic non-singular action is **Type** II if it is essentially measure preserving, or **Type** III if it is genuinely non-singular.
- This terminology originates in the classification of factors in operator algebras: an ergodic non-singular action has an associated factor von Neumann-algebra, and o.e. actions have isomorphic von Neumann-algebras.

Theorem (Krieger's Classification Theorem)

An ergodic non-singular Type III action of amenable groups can be further classified into Types III_{λ} , $0 \le \lambda \le 1$, such that

- Type III_{λ} , $\lambda \in (0, 1]$, is a complete invariant of o.e.
- Type III₀ contains many o.e. classes of its own.

イロト イボト イヨト イヨト

Krieger's Classification Theorem 0000

Computing the Ratio Set

Radon-Nikodym cocycle

Definitions (essential values, ratio set)

Let $G \curvearrowright (X, \mu)$ be a non-singular action.

• The **R-N cocycle** $\psi : G \times X \to \mathbb{R}$ is $\psi_g(x) = \log \frac{d\mu \circ g}{d\mu}(x)$. It is a cocycle in the sense that

$$\psi_{gh}(x) = \psi_{g}(h.x) + \psi_{h}(x).$$

② $r \in \mathbb{R}$ is an **essential value** for *G* if for all *A* ⊂ *X*, μ (*A*) > 0, and ϵ > 0, there can be found $g \in G$ with

$$\mu\left(A\cap g^{-1}\left(A\right)\cap\left\{\left|\psi_{g}-r\right|<\epsilon\right\}\right)>0.$$

3 The **ratio set** $e(G, \mu)$ is the set of all essential values.

Krieger's Classification Theorem 000 \bullet

Computing the Ratio Set

The Ratio Set

Lemma

The ratio set $e(G, \mu)$ of a non-singular ergodic action $G \curvearrowright (X, \mu)$ is a non-empty closed subgroup of \mathbb{R} . Hence it is either of:

•
$$e(G, \mu) = \{0\}$$
 for **Type** III₀;

•
$$e(G, \mu) = \mathbb{Z} \log \lambda$$
 for **Type** III_{λ} with $\lambda \in (0, 1)$; and

•
$$e(G, \mu) = \mathbb{R}$$
 for **Type** III₁.

- Two o.e. actions have the same Type (technical but elementary). The converse is hard.
- Krieger showed that there is a more delicate abstract invariant, called **the associated flow**, which will not be discussed here.

イロト イヨト イヨト イヨ

Krieger's Classification Theorem $_{\rm OOOO}$

Computing the Ratio Set

Dyadic odometer

Example

Let $\mathcal{O}: 2^{\omega} \to 2^{\omega}$ be the odometer, $\rho = \bigotimes_{n < \omega} (p, 1-p)$, $p \neq 1/2$.

- Let the cylinder $C_n = [1, \ldots, 1, 0]_1^n \subset 2^{\omega}$.
- For $x \in C_n$, $\mathcal{O}_{x=(0,...,0,1,x(n+1),...)}$ because $1 + \sum_{k=1}^{n-1} 2^k = 2^n$.
- For $x \in C_n$,

$$\frac{d\mu \circ \mathcal{O}}{d\mu} \left(x \right) = \frac{\mu \left(\left[0, \dots, 0, 1 \right]_{1}^{n} \right)}{\mu \left(\left[1, \dots, 1, 0 \right]_{1}^{n} \right)} = \frac{p^{n-1} (1-p)}{(1-p)^{n-1} p} = \left(\frac{p}{1-p} \right)^{n-2}$$

so the R-N cocycle is $\psi_{\mathcal{O}}(x) = (n-2)\log \frac{p}{1-p}$ on C_n .

• $e(\mathcal{O}, \rho) = \mathbb{Z} \log \frac{p}{1-p}$ so the odometer is Type $III_{\frac{p}{1-p}}$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Krieger's Classification Theorem

Computing the Ratio Set $0 \bullet 0$

Finite permutations

Example

Let
$$\Pi \curvearrowright (2^{\omega}, \rho)$$
 with $\rho = \bigotimes_{n < \omega} \rho_n$, $\rho_n(0) \in (0, 1)$.

- For transposition $\pi: i \leftrightarrow j$, $\frac{d\rho \circ \pi}{d\rho}(x) = \frac{\rho_i(x_j)\rho_j(x_i)}{\rho_i(x_i)\rho_j(x_j)}$.
- If $\lim_{k\to\infty} \rho_{n_k}(0)=p$, $\lim_{j\to-\infty} \rho_{n_j}(0)=q$ then $\log \frac{p}{1-p}\frac{1-q}{q} \in e(\Pi,\rho)$.
- Take a cylinder C supported on [1, N] and $\epsilon > 0$.
- Fix n_k , n_j large and $B = C \cap \{x : x(n_k) = 0, x(n_j) = 1\}$.
- $\pi: n_k \leftrightarrow n_j$ satisfies $\pi(B) \subset C$ and for $x \in B$,

$$rac{d
ho\circ\pi}{d
ho}\left(x
ight)=rac{
ho_{n_{k}}\left(1
ight)
ho_{n_{j}}\left(0
ight)}{
ho_{n_{k}}\left(0
ight)
ho_{n_{j}}\left(1
ight)}pproxrac{p}{1-p}rac{1-q}{q}$$

A (1) > A (2) > A

Thank you

Einstein Institute of Mathematics, The Hebrew University of Jerusalem