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Measure Preserving Actions
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Measure preserving actions

(X, p) is a standard non-atomic measure space.

Aut (X, p) is the group of measure preserving
transformations: invertible 7: X — X s.it. po T—1 = p.

@ A measure preserving action G ~ (X, u) is a
group-homomorphism G — Aut (X, u).

@ A measure preserving action is ergodic if there are no
non-trivial invariant subsets: if g.A C A for all g then
1(A)=0or u(X\A) =0.

e G,H ~ (X, u) are orbit equivalent (o.e.) if there exists
T € Aut(X,u) s.t. T(G.x) = H.T (x) for almost every x.

@ In other words, the orbit equivalence relations of G and H are
isomorphic in a measure preserving way.
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Orbit classification of measure preserving actions

Theorem (Dye)
All ergodic prob. preserving actions of Z are o.e.

Theorem (Ornstein & Weiss; Connes, Feldman & Weiss)

All ergodic prob. preserving actions of amenable groups are o.e.

Theorem (Connes & Weiss; Hjorth)

The above theorem is false for all non-amenable groups.
@ Connes & Weiss for non-Kazhdan's property.
@ Hjorth for Kazhdan's property.

@ Each non-amenable group has uncountably many non o.e.
prob. preserving actions (loana, Epstein).
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On the proof of Dye's Theorem
e Key ideas behind Dye's theorem. For ergodic T € Aut (X, u):

If u(A) = p(B), A can be mapped onto B with iterations of T.

Lemma (The Rohlin's Lemma)

For every N € N and ¢ > 0, there is A C X such that
A, TA, ..., TNA are disjoint and together cover X up to e.

@ “Proof"” of Dye's theorem: if T € Aut (X, u) and
T’ € Aut (X, 1) are ergodic, construct a sequence of Rohlin
Towers for T and T, refining each other on each level. The
corresponding Boolean-mapping gives rise to a point-mapping.
@ Ornstein & Weiss generalized Rohlin's Lemma to amenable

groups using tiling.
Einstein Institute of Mathematics, The Hebrew University of Jerusalem

Nachi Avraham-Re'em




Non-Singular Actions
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Non-singular actions |

(X, p) is a standard non-atomic measure space.

Aut (X, [u]) is the group of non-singular transformations:
invertible T: X — X s.t. o T and p are mutually
absolutely continuous.

A non-singular action G ~ (X, 1) is a group-homomorphism
G — Aut (X, [u]).

The notion of ergodicity is defined verbatim.

G,H ~ (X, u) are orbit equivalent (o.e.) if there exists
T € Aut (X, [u]) st. T(G.x) = H.T (x) for almost every x.

Orbit equivalence and ergodicity depend only on the measure class.

Nachi Avraham-Re'em

Einstein Institute of Mathematics, The Hebrew University of Jerusalem




Non-Singular Actions
0®0000

Non-singular actions Il

Theorem (Ornstein & Weiss; Connes, Feldman & Weiss)

Every ergodic non-singular action of a countable amenable group is
o.e. to a non-singular action of Z.

@ For free actions the proof uses Ornstein & Weiss's
generalization of Rohlin's Lemma to non-singular actions.

@ The non-free case is due to Connes, Feldman & Weiss and is
more involved.

@ There is a new proof by Andrew Marks that should be
interesting to study.
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Non-singular actions Ill (examples)

o Let X = 2¥ with a probability product measure p = @, ., Pn
with p, (0) € (0,1).

@ The equivalence relation Ey on 2% is defined by xEpy if and
only if #{n:x(n)#y(n)} < .

@ An action G ~ 2 is said to be homoclinic if its orbit
equivalence relation is a sub-relation of Eg.

Example (finite permutations)

Let N be the group of permutations of w that change finitely many
elements. It has an obvious Fglner sequence so it is amenable. The
natural action I ~ (2, p) is non-singular and in many cases it is
ergodic (Hewitt-Savage 0-1 law, Aldous-Pitman 0-1 law).
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Non-singular actions IV (examples)

G =@, .., Z/27Z with "coordinate-wise addition” acts naturally
G ~ 2“ by “flipping” each coordinate.

o Let p=Q&,, (p,1—p). If p=1/2 it is measure preserving,
and if p # 1/2 it is merely non-singular.

@ By the Kolmogorov's 0-1 law this action is ergodic w.r.t. p.
o Clearly, the orbit equivalence relation of @, Z/27Z is Ey.

® @, Z/27Z is amenable (either because it is Abelian, or using
the obvious Fglner sequence), so from the
Connes-Feldman-Weiss Theorem it is orbit equivalent to a
non-singular action of Z.
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Non-singular actions V (examples)

Example (dyadic odometer)

2“ has a structure of an Abelian group:

o Identify x=(x(1),....x(n),0,0,...) with the integer N(x)=)", x(k)2x. If
X,y € 2“ are two such elements, x @ y is the unique element
z € 2¥ with N(x)+N(y)=N(z).

(1,1,0,0,...)®(1,1,1,0,0,...) = (0,1,0,1,0,0,...).

This rule extends to all of 2 and there are inverses.

For 1=(1,0,0,...) we have c1=(1,1,1,...).

Let O :2¥ — 2% Ox =(1,0,0,...) @ x. It can be shown
that its orbit equivalence relation is Eg.

@ Thus, O and

new Z/2Z are o.e. as non-singular actions.
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Non-singular actions VI (examples)

Example (shift)
Let G be a countable group and X = 2¢. The shift G ~ 2° is

g :x(h)— x(gh).

@ The orbit equivalence relation of the shift, denoted by
E (G,?2), is far from being homoclinic.

@ In the next week talk | will discuss the very interesting
relations between the shift and the homoclinic actions.
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Krieger's classification |

@ Two cases for a non-singular ergodic action G ~ (X, p):

@ The action is essentially measure preserving: there is a measure
von X s.t. (i) v is equivalent to p (ii) v is G-invariant.

e Thus, G ~ (X, p) is isomorphic, in the non-singular category,
to the measure preserving action G ~ (X, v).

@ The action is genuinely non-singular: there is no v as before.

@ The first case corresponds to the classical theory of measure

preserving actions and Dye's theorem provides a full answer
(caution: depending on whether v is finite or infinite)

@ The second case is different and requires new ideas.
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Krieger's classification Il

@ An ergodic non-singular action is Type II if it is essentially
measure preserving, or Type III if it is genuinely non-singular.

@ This terminology originates in the classification of factors in
operator algebras: an ergodic non-singular action has an
associated factor von Neumann-algebra, and o.e. actions have
isomorphic von Neumann-algebras.

Theorem (Krieger's Classification Theorem)

An ergodic non-singular Type 111 action of amenable groups can be
further classified into Types II1, 0 < A <1, such that

o Typellly, X € (0,1], is a complete invariant of o.e.

e Type Illy contains many o.e. classes of its own.
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Radon-Nikodym cocycle

Definitions (essential values, ratio set)

Let G ~ (X, i) be a non-singular action.

@ The R-N cocycle ¢/ : G x X — R is ¢4 (x) = log d,u,og( ).
It is a cocycle in the sense that

Vgh (x) = g (h.x) + ¥n (x) .

@ r € R is an essential value for G if for all A C X, u(A) >0,
and € > 0, there can be found g € G with

u(Ang (A n{lvg —rl<e) >o0.

© The ratio set e (G, p) is the set of all essential values.
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The Ratio Set

Lemma

The ratio set e (G, j) of a non-singular ergodic action G ~ (X, )
is a non-empty closed subgroup of R. Hence it is either of:

e ¢(G,u) = {0} for Type Illy;
e ¢(G,u) =Zlog\ for Type 111 with A € (0,1); and
e ¢(G,u) =R for Type I1I;.

@ Two o.e. actions have the same Type (technical but
elementary). The converse is hard.

@ Krieger showed that there is a more delicate abstract invariant,
called the associated flow, which will not be discussed here.
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Dyadic odometer

Let O : 2¥ — 2“ be the odometer, p = @, (p,1 —p), p #1/2.
o Let the cylinder C, =[1,...,1,0]f C 2.
@ For x € C,, Ox=(0,...,0,1,x(n+1),...) because 14+3 "]~ + 2k=2n.
e For x € C,,

duoO( ) = u([0,...,0,1]7)
dp ~ p([L.-,1,017)

p"t(1-p) _ ( p )”_2

(1-p)"'p — \1-p

so the R-N cocycle is Yo (x) = (n—2)log 12 on G,.
e ¢(0,p)="2Zlog ﬁ so the odometer is Type IIIIL.
—pP
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Finite permutations

Let n~ (2wap) Wlth p= ®n<w Pn; ,On( ) (O 1)

dpor i)
i ) = Gicainear

If limi— 0 pn, (0)=p, Iimj_,_ocp,,j(o):q then log ﬁl—qq € e(N,p).
Take a cylinder C supported on [1, N] and € > 0.

Fix nk, nj large and B = CN{x : x(nx) = 0,x (n;) = 1}.

T ni <> nj satisfies 7 (B) C C and for x € B,

dpoﬂ-(x):pnk(]‘)pnj(o)% P l_q
dp P (0)pny (1) 1—p ¢

@ For transposition 7 : i <> j,
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Thank you
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