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Measure preserving actions

(X , µ) is a standard non-atomic measure space.
Aut (X , µ) is the group of measure preserving
transformations: invertible T : X → X s.t. µ ◦ T−1 = µ.
A measure preserving action G y (X , µ) is a
group-homomorphism G → Aut (X , µ).
A measure preserving action is ergodic if there are no
non-trivial invariant subsets: if g .A ⊂ A for all g then
µ (A) = 0 or µ (X\A) = 0.
G ,H y (X , µ) are orbit equivalent (o.e.) if there exists
T ∈ Aut (X , µ) s.t. T (G .x) = H.T (x) for almost every x .
In other words, the orbit equivalence relations of G and H are
isomorphic in a measure preserving way.
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Orbit classification of measure preserving actions

Theorem (Dye)
All ergodic prob. preserving actions of Z are o.e.

Theorem (Ornstein & Weiss; Connes, Feldman & Weiss)
All ergodic prob. preserving actions of amenable groups are o.e.

Theorem (Connes & Weiss; Hjorth)
The above theorem is false for all non-amenable groups.

Connes & Weiss for non-Kazhdan’s property.
Hjorth for Kazhdan’s property.
Each non-amenable group has uncountably many non o.e.
prob. preserving actions (Ioana, Epstein).
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On the proof of Dye’s Theorem
Key ideas behind Dye’s theorem. For ergodic T ∈ Aut (X , µ):

Fact
If µ (A) = µ (B), A can be mapped onto B with iterations of T .

Lemma (The Rohlin’s Lemma)
For every N ∈ N and ε > 0, there is A ⊂ X such that
A,TA, . . . ,TNA are disjoint and together cover X up to ε.

“Proof” of Dye’s theorem: if T ∈ Aut (X , µ) and
T ′ ∈ Aut (X , µ′) are ergodic, construct a sequence of Rohlin
Towers for T and T ′, refining each other on each level. The
corresponding Boolean-mapping gives rise to a point-mapping.
Ornstein & Weiss generalized Rohlin’s Lemma to amenable
groups using tiling.
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Non-singular actions I

(X , µ) is a standard non-atomic measure space.
Aut (X , [µ]) is the group of non-singular transformations:
invertible T : X → X s.t. µ ◦ T−1 and µ are mutually
absolutely continuous.
A non-singular action G y (X , µ) is a group-homomorphism
G → Aut (X , [µ]).
The notion of ergodicity is defined verbatim.
G ,H y (X , µ) are orbit equivalent (o.e.) if there exists
T ∈ Aut (X , [µ]) s.t. T (G .x) = H.T (x) for almost every x .

Observation
Orbit equivalence and ergodicity depend only on the measure class.
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Non-singular actions II

Theorem (Ornstein & Weiss; Connes, Feldman & Weiss)
Every ergodic non-singular action of a countable amenable group is
o.e. to a non-singular action of Z.

For free actions the proof uses Ornstein & Weiss’s
generalization of Rohlin’s Lemma to non-singular actions.
The non-free case is due to Connes, Feldman & Weiss and is
more involved.
There is a new proof by Andrew Marks that should be
interesting to study.

Nachi Avraham-Re’em Einstein Institute of Mathematics, The Hebrew University of Jerusalem



Measure Preserving Actions Non-Singular Actions Krieger’s Classification Theorem Computing the Ratio Set

Non-singular actions III (examples)

Let X = 2ω with a probability product measure ρ =
⊗

n<ω ρn
with ρn (0) ∈ (0, 1).
The equivalence relation E0 on 2ω is defined by xE0y if and
only if # {n : x (n) 6= y (n)} <∞.
An action G y 2ω is said to be homoclinic if its orbit
equivalence relation is a sub-relation of E0.

Example (finite permutations)
Let Π be the group of permutations of ω that change finitely many
elements. It has an obvious Følner sequence so it is amenable. The
natural action Π y (2ω, ρ) is non-singular and in many cases it is
ergodic (Hewitt-Savage 0-1 law, Aldous-Pitman 0-1 law).
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Non-singular actions IV (examples)

Example
G =

⊕
n<ω Z/2Z with “coordinate-wise addition” acts naturally

G y 2ω by “flipping” each coordinate.
Let ρ =

⊗
n<ω (p, 1− p). If p = 1/2 it is measure preserving,

and if p 6= 1/2 it is merely non-singular.
By the Kolmogorov’s 0-1 law this action is ergodic w.r.t. ρ.
Clearly, the orbit equivalence relation of

⊕
n<ω Z/2Z is E0.⊕

n<ω Z/2Z is amenable (either because it is Abelian, or using
the obvious Følner sequence), so from the
Connes-Feldman-Weiss Theorem it is orbit equivalent to a
non-singular action of Z.
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Non-singular actions V (examples)

Example (dyadic odometer)
2ω has a structure of an Abelian group:

Identify x=(x(1),...,x(n),0,0,... ) with the integer N(x)=
∑

k x(k)2k . If
x , y ∈ 2ω are two such elements, x ⊕ y is the unique element
z ∈ 2ω with N(x)+N(y)=N(z).
(1, 1, 0, 0, . . . )⊕ (1, 1, 1, 0, 0, . . . ) = (0, 1, 0, 1, 0, 0, . . . ) .
This rule extends to all of 2ω and there are inverses.
For 1=(1,0,0,... ) we have 	1=(1,1,1,... ).
Let O : 2ω → 2ω, Ox = (1, 0, 0, . . . )⊕ x . It can be shown
that its orbit equivalence relation is E0.
Thus, O and

⊕
n<ω Z/2Z are o.e. as non-singular actions.
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Non-singular actions VI (examples)

Example (shift)
Let G be a countable group and X = 2G . The shift G y 2G is

g : x (h) 7→ x (gh) .

The orbit equivalence relation of the shift, denoted by
E (G , 2), is far from being homoclinic.
In the next week talk I will discuss the very interesting
relations between the shift and the homoclinic actions.

Nachi Avraham-Re’em Einstein Institute of Mathematics, The Hebrew University of Jerusalem



Measure Preserving Actions Non-Singular Actions Krieger’s Classification Theorem Computing the Ratio Set

Krieger’s classification I

Two cases for a non-singular ergodic action G y (X , µ):
1 The action is essentially measure preserving: there is a measure
ν on X s.t. (i) ν is equivalent to µ (ii) ν is G-invariant.

Thus, G y (X , µ) is isomorphic, in the non-singular category,
to the measure preserving action G y (X , ν).

2 The action is genuinely non-singular: there is no ν as before.
The first case corresponds to the classical theory of measure
preserving actions and Dye’s theorem provides a full answer
(caution: depending on whether ν is finite or infinite)
The second case is different and requires new ideas.

Nachi Avraham-Re’em Einstein Institute of Mathematics, The Hebrew University of Jerusalem



Measure Preserving Actions Non-Singular Actions Krieger’s Classification Theorem Computing the Ratio Set

Krieger’s classification II

An ergodic non-singular action is Type II if it is essentially
measure preserving, or Type III if it is genuinely non-singular.
This terminology originates in the classification of factors in
operator algebras: an ergodic non-singular action has an
associated factor von Neumann-algebra, and o.e. actions have
isomorphic von Neumann-algebras.

Theorem (Krieger’s Classification Theorem)
An ergodic non-singular Type III action of amenable groups can be
further classified into Types IIIλ, 0 ≤ λ ≤ 1, such that

Type IIIλ, λ ∈ (0, 1], is a complete invariant of o.e.
Type III0 contains many o.e. classes of its own.
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Radon-Nikodym cocycle

Definitions (essential values, ratio set)
Let G y (X , µ) be a non-singular action.

1 The R-N cocycle ψ : G × X → R is ψg (x) = log dµ◦g
dµ (x).

It is a cocycle in the sense that

ψgh (x) = ψg (h.x) + ψh (x) .

2 r ∈ R is an essential value for G if for all A ⊂ X , µ (A) > 0,
and ε > 0, there can be found g ∈ G with

µ
(
A ∩ g−1 (A) ∩ {|ψg − r | < ε}

)
> 0.

3 The ratio set e (G , µ) is the set of all essential values.

Nachi Avraham-Re’em Einstein Institute of Mathematics, The Hebrew University of Jerusalem



Measure Preserving Actions Non-Singular Actions Krieger’s Classification Theorem Computing the Ratio Set

The Ratio Set

Lemma
The ratio set e (G , µ) of a non-singular ergodic action G y (X , µ)
is a non-empty closed subgroup of R. Hence it is either of:

e (G , µ) = {0} for Type III0;
e (G , µ) = Z log λ for Type IIIλ with λ ∈ (0, 1); and
e (G , µ) = R for Type III1.

Two o.e. actions have the same Type (technical but
elementary). The converse is hard.
Krieger showed that there is a more delicate abstract invariant,
called the associated flow, which will not be discussed here.
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Dyadic odometer

Example
Let O : 2ω → 2ω be the odometer, ρ =

⊗
n<ω (p, 1− p), p 6= 1/2.

Let the cylinder Cn = [1, . . . , 1, 0]n1 ⊂ 2ω.
For x ∈ Cn, Ox=(0,...,0,1,x(n+1),... ) because 1+

∑n−1
k=1 2

k=2n.
For x ∈ Cn,

dµ◦O
dµ (x) = µ([0,...,0,1]n1)

µ([1,...,1,0]n1)
= pn−1(1−p)

(1−p)n−1p =
(

p
1−p

)n−2

so the R-N cocycle is ψO (x) = (n − 2) log p
1−p on Cn.

e (O, ρ) = Z log p
1−p so the odometer is Type III p

1−p
.
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Finite permutations

Example
Let Π y (2ω, ρ) with ρ =

⊗
n<ω ρn, ρn (0) ∈ (0, 1).

For transposition π : i ↔ j , dρ◦π
dρ (x) = ρi (xj )ρj (xi )

ρi (xi )ρj (xj ) .

If limk→∞ ρnk (0)=p, limj→−∞ ρnj (0)=q then log p
1−p

1−q
q ∈ e (Π, ρ).

Take a cylinder C supported on [1,N] and ε > 0.
Fix nk , nj large and B = C ∩ {x : x (nk) = 0, x (nj) = 1}.
π : nk ↔ nj satisfies π (B) ⊂ C and for x ∈ B,

dρ ◦ π
dρ (x) =

ρnk (1) ρnj (0)
ρnk (0) ρnj (1) ≈

p
1− p

1− q
q .
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Thank you
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